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[57] ABSTRACT

A multipole magnetic well for plasma confinement
includes a plurality of current-carrying coils placed on
planes corresponding to the facets of a regular polyhe-
dron that can be symmetrically circumscribed about a
sphere. The direction of current in the coils is such as
to minimize the flux density at the center of the polyhe-
dron, thereby providing a confinement well with three-
dimensional symmetry having an increasing flux den-
sity in all directions from the center.
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CALCULATION OF THE MAGNETIC FIELD WITH TETRAHEDRAL SYMMETRY
GX(XvaZ’H)=Z*COS(3.1416*H)*R/((X—R*COS(3.1416*H))*(X—R*COS(3.1416
LEW) )+ (Y+R¥SIN(2.1416%H) ) 2 (Y+RESINI3.14616%W) ) 622} %] .5
GY(X;Y:Z;H)=-Z*SIN(3-1416*“)*Rl((X-R*COS(3-l%lb*H))*(X—R*COS(3.141
Lo3WI) ¢ (Y+RESIN(3.1416%R) )% (YeR*SINI3.1416%W)) +2%7b%2].5
GZ(X:YyZ,H)=(Y*SIN(3.1416*HI-X*CDS(3-1416*Hl+Rl*R/((X-R*COS
1(3.1416*H))*(X—R*COS(3-1416¢H))4(Y+R*SIN(3.14l6*N))*(Y+R*SIN(
23.1416%KW)I¢ZxZ2)5%1,5

R=0.053

C=0.707%R

¥Y=0.

0C 30 !=1,21

DO 30 J=1,21

CC 30 K=1,21

NM1=1-1

NM2=g-1

NFP3=K-1

X=—0.065¢0.0065%FLOAT(AML}

1==0.065+0.0065%FLOAT(NM2)

Y¥==0.065+0. 0065%FLOAT (NM3)

X2=X

¥2=-~0.333333%Y~0.9428303%72

212=0.5428303%Y~0.3333333%2

X3=-0.5%X-0.8660255%Y
¥Y3=—0.2886T517#X+0.1666666T*Y-0.9428303%7
13=0.816515%X-C.47141515%Y-0.333333%7
X4=—0.5%X+0.8660255%Y
Y4=0.28867517% X+ 0. 166666T%Y-0,9428303%Z
14=-0,816515%X~044T141515%Y~0,333333%2

T1=2-C

TlP=1+C

12=22-C

TeP=22+C

T3=13-C

T3P=123+C

T4=24-C

T4P=24+C

Xi=X

Yl=Y

h=15

A=0.

8=¢.2832

H=(B-A}/FLOAT{N)

SX1=0.

$X2=0.

$x3=0.

SX4=0.

SYl=0.

SY2=0.

SY3=0,

SY4=0.

$21=0.

§22=0.

S$Z3=0.

S24=0.

SX1P=0. .,

SX2P=0.

SX3P=0.

SX4P=40. FEG. ii B
SY1P=0. :
SY2P=0.

SY3P=0.

SY4P=0.

$21P=Q.

SZ2P=0.

SZ3P=0.

SZ4P=0.

HOV2=H/2.

HALFX1=GX{X ,Y ,Tl,A+HCV2]
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FIG.11C
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MAGNETIC WELL FOR PLASMA CONFINEMENT

BACKGROUND AND SUMMARY

The present invention relates to a magnetic well for
confining or containing a plasma—i.e., an ionized gas.
Such wells are useful, for example, for plasma confine-
ment in nuclear fusion reactors, as well as other areas.

A plasma in a magnetic field will tend to drift to the
weakest region of the field. Therefore a field which
increases in an outward direction from the plasma will
be best suited to keep. the plasma together—i.e., “‘con-
fined”. Such field configurations are collectively
known as magnetic wells.

The theory of a constricted gas current was first de-
veloped by W. H. Bennett in 1934 in his article in Phys.
Rev., Vol. 45, P. 890. A few years later, a different
approach was presented independently by L. Tonks
Electrochem. Soc., Vol. 72, p. 167 (1937). Tonks theo-
retically analyzed the constriction of a current filament
due to the action of the azimuthal magnetic field gener-
ated by the current itself, the effect of constriction was
called the “pinch effect”. Subsequently, a great num-
ber of experiments involving pinch discharges have
been carried out and the theory of a pinch discharge is
well developed.

Because of the loss of charged particles from the ends
of a linear pinch, endless tubes of either toroidal or
race-track form were studied, see, for example, W. H.
Bostick, USAEC Report Wash-115, Wash., D. C., 1952,
or J. L. Tuck, USAEC Report Wash-146, Wash., D. C.,
1953. “AEC” stands for Atomic Energy Commission.
But even if losses along the field lines are inhibited by
using toroidal configurations where the lines close
upon themselves inside the confinement region, parti-
cles may be lost through drift motions across the mag-
netic field. Losses of this type can be minimized, either
by choosing a magnetic field where the drift motions
cancel for particles running through the confinement
region repeatedly, such as in a stellarator machine as
described by L. Spitzer, “Magnetic Fields and Particle
Orbits in a High-Density Stellerator”, AL Report
NYO0-997, New York Operations Office, 1952, or by

having drift motions which follow closed paths inside .

the same region, see B. Lehnert, Nature, London Vol.
181, p. 331 (1958), or N. C. Christofilos, Proc. Second
Inter. Conf. on the Peaceful Uses of Atomic Energy, Vol.
32, p. 279 (1958).

Another concept of confining plasma is the magnetic
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mirror system which is used to minimize the loss of 50

charged particles from the ends when a plasma is con-
fined by means of an externally applied axial magnetic
field in a straight cylindrical tube, R. F. Post, Proc.
Second Int. Conf. On The Peaceful Uses of Atomic En-
ergy, Vol. 32, p. 245 (1958); M. Bineau, T. Consoli, P.
Hubert, F. Prevot, P. Ricateau, and A. Samain, Nucl.
Instr., Vol. 5, p. 282 (1959); M. Bineau, T. Consoli, P.
Hubert, P. Prevot, P. Ricateau, Nucl. Instr., Vol. 5, p.
290 (1959).

In most systems, such as mentioned above, in which
a plasma is confined by a magnetic field that surrounds
it smoothly, i.e., without a discontinuity, there will be a
tendency toward instability. A field where the field-
plasma interface is everywhere convex on the side
toward the plasma has been proposed to overcome this
instability, H. Grad. USAEC Report Wash-289, Wash-
ington, D.C., 1955; NYO-7969, New York Operations
Office, 1957; J. Berkowitz, K. O. Friedrichs, H. Goert-

55

60

65
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zel, H. Grad, J. Killeen, and E. Rubin, Proc. Second
U.N. Conf. On Peaceful Uses of Atomic Energy, Vol. 31,
p. 171 (1958); B. B. Kadomtsev and S. I. Braginsky,
Proc. Second U.N. Conf. On Peaceful Uses of Atomic
Energy, Vol. 32, p. 233 (1958); C. L. Longmire,
USAEC Report Wash-289, -289, Washington, D.C.
1955; J. L. Tuck, USAEC Report Wash-289, Washing-
ton, D. C., 1955, Systems with this kind of field are
called cusped magnetic fields. The cusped systems
generally have linear or cylindrical geometry and yield
one- or two-dimensional confinement only.

Other confinement systems, such as the “mirror-
type” magnetic field of “Baseball II”” are known, see C.
C. Damm, H. Berkner, W. S. Cooper IlII, K. W. Ehlers,
A. H. Futch, G. W. Hamilton, J. E. Osher, R. V. Pyle,
Fourth Conference on Plasma Physics and Controlled
Nuclear Fusion Research, Madison, Wisconsin, CONF-
710607-98, 1971. This was the first field with a consid-
erable degree of three-dimensional symmetry; but it
does not have a spherical symmetry, i.e., the field con-
figuration is not very isotropic. The present invention
provides a more nearly spherically symmetric magnetic
field, with field lines that have characteristics of cusped
magnetic field as well. In addition, the following pa-
tents are known: U.S. Pat. Nos. 3,214,342, 3,218,235,
3,230,145, 3,290,219, 3,442,758, 3,561,033,
3,523,206, 3,650,893, 3,663,360, 3,155,592,
3,663,362, 3,665,508, 3,708,391.

Magnetic wells used to date generally have had cylin-
drical or toroidal symmetry. A more uniform (or iso-
tropic) symmetry is desirable. A spherical symmetry,
i.e., a totally isotropic well configuration, would be
best, but this is all but impossible to achieve as a practi-
cal matter. We have discovered how to achieve polyhe-
dral symmetry, which comes closest to the spherical
one. This is achieved by locating current-carrying coils
on planes corresponding to the facets of a regular poly-
hedron that can be symmetrically circumscribed about
or within a sphere (hereinafter simply called “regular
polyhedrons™). There are five such polyhedrons: tetra-
hedron (four sides), cube (six sides), octahedron
(eight), duodecahedron (12), and icosahedron (12).

One such coil or loop configuration is analyzed in
detail and corresponds to a coil on each of the eight
facets of an octahedron. In this way, each coil passes
through three of the six geometric poles on a reference
sphere, i.e., the points where each axis of rectangular
coordinates concentric with the sphere would cut its
surface. Thus, the coils are arranged into four opposing
sets or pairs. The axis of each set of loops is angularly
displaced from that of the other three sets as the three
apexes of a regular tetrahedron. By arranging the loops
in this manner, a magnetic field with tetrahedral sym-
metry will be produced.

The strength and direction of the resulting magnetic
field have been calculated, and the motion of charged
particles in this field has been studied. Experiments
were also made to show the characteristics of this mag-
netic field.

The features and advantages of the present invention
will become apparent from the following detailed de-
scription, together with the accompanying drawings.

THE DRAWING

FIG. 1 is a functional block diagram of a system for
generating a plasma;

FIG. 2 is a diagrammatic illustration showing a coil
configuration for tetrahedral symmetry;
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FIGS. 3 and 4 are views taken respectively from
different angles showing an arrangement of four pairs
of current loops having octahedral symmetry;

FIG. § is an illustration of a magnetic flux surface
generated by the magnetic field for the coil arrange-
ment of FIGS. 3 and 4;

FIG. 6 illustrates the position of one pair of coils, for
analysis purposes, for the configuration of FIGS. 3 and
4 with respect to a Cartesian Coordinate system;

FIGS. 6A, 6B, 6C and 6D illustrate various coordi-
nate transformations used for analysis of a magnetic
field;

FIG. 6E illustrates the coordinate system used to
analyze the magnetic field for a single loop;

FIG. 7 is a plot of magnetic strength of the embodi-
ment of FIGS. 3 and 4 as a function of position along
the z, axis;

FIG. 8 is a plot of the calculated magnetic field
strength for the embodiment of FIGS. 3 and 4 as a
function of position along the x, axis;

FIG. 9 is a.calculated plot of the magnetic gradient as
a function of position along the z, axis;

FIG. 10 is a diagrammatic illustration of a system for
minimizing end losses for the system of FIGS. 3 and 4;
and

FIGS. 11A-11C comprise a computer program for
computing the magnetic field produced by a current
loop arrangement of FIGS. 3 and 4.

DETAILED DESCRIPTION

Referring first to FIG. 1, there is shown a functional
diagram of a system in which the present invention may
be used, the system shown being primarily intended as
a research system for investigating plasma confinement
and compression characteristics of magnetic wells with
three-dimensional symmetry. As seen there, reference
numeral 10 generally designates a magnetic well which
is enclosed in an evacuated chamber 11. A vacuum
system 12 is used to establish and maintain the vacuum
within the chamber 11. A plasma gun 13 is used to
inject the ionized gas into the evacuated chamber 11
where it is held by the magnetic well 10. The gun 13
includes a gas inlet 14 for admitting preselected quanti-
ties of a predetermined gas being studied; and a trigger
circuit 15 is used to supply electrical energy to the
plasma gun 13 by means of the structure known in the
art as a backstrap electrode structure generally desig-
nated by reference numeral 17.

fonized gas or plasma is formed within the gun 13 and
communicated by means of a conduit 18 into the cham-
ber 11 where it is held by means of the magnetic well
10. The coils which form the magnetic well may be
placed outside of the vacuum chamber 11, and they are
not illustrated in FIG. 1.

The apparatus of FIG. 1 may be used to measure
plasma leakage from the well and to study, for example,
the behavior of a plasma undergoing compression in an
increasing field.

In addition to the apparatus which is shown, a func-
tion generator may be used to transmit signals of differ-
ent waveforms through the plasma, the deformation of
the received signal would be analyzed to yield informa-
tion concerning wave-plasma interactions. Other appli-
cations could readily be conceived.

Turning now to FIG. 2, there is shown a coil configu-
ration for achieving tetrahedral symmetry, the tetrahe-
dron is shown in perspective and designated 20, the
lines closest to the observer being solid. The tetrahe-

10

20

25

30

35

4

dron 20 has four planar faces or *facets,’two of which
could be seen by the observer if the tetrahedron were
solid. These are designated 21 and 22. There is also a
rear hidden facet 23, and a bottom facet 24. On each of
the facets 21-24, there is a coil, and these are desig-
nated respectively 25-28.

The tetrahedron 20 is a regular tetrahedron--that is,
it could be circumscribed about a sphere or a sphere
could be circumscribed about it. In the former case, all
facets of the tetrahedron are tangential to the surface
of the sphere, and in the latter case, the surface of the
sphere intersects with each of the four corners of the
tetrahedron in a symmetrical manner.

Each of the coils 25-28 is a current-carrying conduc-
tor; and the words “coil” or “loop” are intended in a
very broad sense to include a single conductor loop, a
multiplicity of loops, a super-conducting element, and
all other current-conducting elements.” When it is
stated that a coil or loop in this broad sense, is located
in a plane which corresponds to a facet of a polyhe-
dron, it will be appreciated that the polyhedron is imag-
inary, and that obviously a coil or current-carrying loop
has three dimensions and cannot exist in a two-dimen-
sional plane. In other words, the invention can be prac-
ticed even though the coil extends in an axial direction.
It will be observed that each of the coils of FIG. 2 lies
in a plane corresponding to one facet of a tetrahedron
and is tangential to planes corresponding to the other
three facets, but this is not absolutely necessary. For
example, each of the schematic circles representing a
loop could intersect with the corners of the triangular
shape of its associated facet, and a magnetic well would
still be formed. Again, in this case, two coils having
physical dimensions cannot “intersect” at a point, and
what is meant that they may pass over one another but
they should be kept as close as possible to the ideal
configuration. Further, the size of the coils are not
limited to the specific configurations just described, but
may range anywhere between the two configurations
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two configurations described. The coils need not be in
a plane of a facet of a polyhedron, but may be displaced
from that plane to one which is parallel to it. This is also
true for coils associated with the other regular polyhe-
dral shapes.

In determining the direction of current flow for the
tetrahedral symmetry shown in FIG. 2, current must
flow in the loops in such a direction that, using the
righthand rule for determining magnetic polarity, if the
fingers are pointed in the direction of current flow
around the loop (assuming current flow to be opposite
direction of electron migration), and the thumb ex-
tended, the thumb must extend toward the interior of
the polyhedron for all coils, or it must extend outwardly
for all coils. This will insure that the net magnetic field
at the center will be minimized, thereby creating the
magnetic well, with the magnetic field increasing as one
proceeds in all directions from the center. In this sense,
the center is a point represented by the intersection of
lines perpendicular to each facet of the tetrahedron
and passing through the center of the circles represent-
ing the loops.

Turning now to FIGS. 3 and 4, there is shown an
arrangement of the coils for octahedral symmetry—.-
that is, there are eight coils, one placed to correspond
with each of the eight sides of a regular octahedron, the
drawings being taken from different perspectives obvi-
ously.
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In FIG. 3, there is a first pair of coils 30, 31 which are
parallel and geometrically opposing and located at
upper and lower surfaces. There is a second set of
opposing coils designated respectively 32, 33. The coils
of a third opposing pair are designated respectively 34,
35, and the fourth pair are designated respectively 36,
37. For this embodiment, each of the circular loops
30-37 are placed in a plane which corresponds to one
facet of the octahedron (which is not shown for clarity)
with the loops being of a size 10 intersect with the cor-
ners of an associated facet——as distinguished from
being circumscribed by the periphery of the facet.

Because of its double symmetry, the ‘direction of
current flow in the loops for an octahedral structure
can be such that opposing pairs of coils may generate
reinforcing, rather than opposing fields. That is to say,
each reinforced field then becomes equivalent to one
of the fields produced by a tetrahedral structure, and
the system reduces to a tetrahedral well. In this case,
however, the reinforced fieids of each opposing pair
must all extend inwardly or outwardly (in a vector
sense) from the center of the octahedron. Alterna-
tively, the field produced by each individual coil may
extend inwardly or outwardly, but they all must have
the same inward or outward orientation relative to the
center of the octahedron. By extending “inwardly” or
“outwardly” it is meant that a common pole, such as
the north pole would extend in that direction. How-
ever, the south pole could equally well apply.

FIG. § is a representation of a magnetic flux surface
generated by the magnetic field for the octahedral
structures of FIGS. 3 and 4 with the fields of each loop
of an opposing pair reinforcing each other. An “oppos-
ing” pair of coils in this sense indicates that the planes
of the octahedron with which the pair of coils are asso-
ciated are parallel so that the coils face or “oppose”
each other, although, as mentioned, their respective
magnetic fields may either reinforce or oppose each
other, for this particular case.

The magnetic flux surface of FIG. 5 is generated by
tracing all flux lines passing through locations equidis-

tant from the poles of each of the eight coils or current .

loops. That is to say, if the radius of each coil is five
centimeters, if one would trace the fiux lines passing
through all of the coils at a distance of four centimeters
from the center of each coil, one would generate an
envelope such as that shown in FIG. 5.

One opposing pair of a set of coils such as previously
described includes two parallel circular current loops
(designated 49, 41 in FIG. 6) that are separated by a
distance equal to V2 times the loop radius. The mag-
netic field of this set of coils is similar to, but not identi-
cal to, that of a pair of Helmholtz coils (where the
separation is exactly equal to the loop radius). Conse-
quently, the axial variation in the magnetic field is
greater than for a set of Helmholiz coils, where the field
strength is almost constant in the region between the
coils.

To analyze the field between a pair of coils such as
shown in FIG. 6, consider a thin wire bent into a circu-
lar loop and carrying a current I. The radius of the loop
is R, and its center is located at the point (0,0,0). The
loop lies in the xy-plane, as shown in FIG. 6A. The field
B at all space points may be computed by the Biot-
Savart law. By this law, B is given by the integral as:
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From FIG. 64, it is clear that
dl'=Rd¢’ (—Sing’ &+ Cosg’ )

and
P = (x—R Cosd’)I+(y—R Sing")§ + =2

Where x,  and 7 are the three unit direction vectors
in the Cartesian Coordinates.

Consequently,
g - s e Y
dl'xy, = [z Cos¢’{ + z Sing'§ — (v Sind’+x Cos-

¢'—R)Z]Rd¢'

We now obtain for the field B the expression:

ol

B=
T 4q

2% R X
0 [z Cos¢'Z + z Sing'y — (¥ Sing’

+ x Cos¢’—R)Z] - Rdd'{(x — R Cos¢’)?
+ (¥ — R Sing’ )2 + 2|32

> = -
=By(x,y,2)+B,(x,y,2) + B (x, v, 1) (2)

where

27

ol %
z Cos¢p’ - R - [(x — R Cos¢’)?

> H
Br(x,¥,2) =?

+ (y = R Sing')? + 22|"2dep’
2
fo T 2 Sind’ - R [(x — R Cosd')?

3)

> Hol
B,,(x,y,z)=#

+ (y — R Sing" )2 + £21"*2d¢’ (4)

Hol

2 o ,
o o — (y Sing’' + x Cos¢p' — R) 'R

-
B (x,y,2)=

“[(x = R Cosd’)? + (y — R Sing’)? +22]~¥2d¢’ 5

Next, let the center of the reference coordinates be
shifted to the midway point on the axis of the two paral-
let current loops. Then the magnetic field produced by
this set of current loops is the superposition of the
magnetic fields produced separately by two single cur-
rent loops as in FIG. 6A with the origins at
(0,0,z— V2/2R) and (0,0z+ V'2/2R), respectively.
The field produced by this set of current loops is then
given by:

F =, Buxy.~ V22 R+ Buxya= VI2 R)
+B.(x.y.2= V2I2 RY + Bo(xy,2+ V22 R)

+B,(x,y,z+ V212 R) + Bi(x,y,z+ V 212 R)
The integrations of Equations (3, 4 and 5) can be car-
ried out by using infinite Legendre polynomials to rep-
resent the integrand and then integrating them. One
can use numerical approximation to evaluate the inte-
gral. Though it is only approximately correct, the accu-
racy is good enough for comparison with experimental
results.

The numerical calculation can be done by computer,
using the program shown in FIGS. 11A-11C.

(6)
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TOTAL FIELD FOR ALL FOUR SETS OF COILS
Coordinate Transformations

Equation (6) gave the magnetic field resulting from
the currents in one pair of loops, where the z axis was
chosen as the axis for that particular set. To calculate
the collective field for all four sets, where the axis of
each set is displaced from each of the other axis by
109.47° (the tetrahedral angle), as shown in FIGS
6A—-6D, one has to transform all the coordinates to a
common system.

When the coordinates (x,,y,,z;) are rotated clock-
wise through an angle of 109.47° about the x, axis, then
the -y axis will intersect with one of the edges of imagi-
nary tetrahedron at a point that is one-fourth of the
length of the edge removed from the apex of the tetra-
hedron as shown in FIG. 6B. The z axis will now be-
come the axis of a second set of coils. If the rotated set
of coordinates is designated by (x,,y.,2,), the relation-
ship between (x,,y,.2,) and (x,,y5,2,) is given by vector
transformation theory as:

X2 10 0

b

7
¥z |= ] 0 Cosé —Sing ¥ M

Z2 0 Sing Cosé 2

where 68 = 109.47°

The complicated geometric relationship makes the
transformation from the coordinates (xs,ys,23) to the
coordinates (x,,x,,z;) more difficult than that of
(x3,¥2,22) 10 (X1,y1,21).

The coordinates (x,,y1,2,) are first rotated clockwise
through an angle of 120° about the z, axis (FIG. 6C) to
get a new set of coordinates (x,',x,",z,") with the rela-
tionship as:

x, Cos¢p—Sing 0 X,

, . (8)
»' =] Sing Cos¢ 0 Y
2y 0 0 | 2

where 8=120°,

We then rotate the coordinates (x,’,y,'z,’) clockwise
through an angle 109.47° about the x,’ axis to get the
coordinates (x3,ys,23) with the relationship as:

X3 10 0 x,’

9
va =] 0 Cosé —Sin@ ¥y )
23 0 Siné Cosé z,

Combining Equation (8) and Equation (9), the result
is:

X5 Cosd¢ Sin¢ 0 Xy

. . (10)
ya 1= | SingCosb Cos¢pCos6 —Sind N
23 Sin¢Sind Cos¢Sing Cosd 2
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Transformation to (x4,y424) involves a similar proce-
dure, except that we first rotate about z, axis 240°
(FIG. 6D) instead of 120° This leads to:

Xy Cos¢ Sin¢ 0 Xy

11
¥y =1 -SindCos8 CosdpCos8 —Sind v ab
24 —Sin¢Sin@ Cos¢Siné Cosé Z)

Inserting the numerical values into Equations (7, 10
and 11), we get:

- AT -
Xy 1 0 0 Xy
¥ |=]0—0.33333 —0.9428 i (12)
2 0 0.9428 —0.33333 o |
X —0.500 —0.866 0 '
va [=| —0.2887 0.1667 ~0.9428 " (13)
2 0.8165 —0.4914 —0.33333 | | z,

and
X —0.500  0.866 0 .x,
vo [=| 02887 0.1667 —0.9428 » (14)

1

24 —0.8165 —0.4714 —0.33333 z

SUMMATION OF FIELDS

The total field of four sets of coils is the superposition
of the fields produced by each individual set. As stated
position of the fields produced by each individual set.
As stated previously, Equation (6) shows the field pro-
duced by a single set of coils. The total magnetic field
is then given by:

> 4 > > -
Br=3 (B,‘+ B, + B,')
i=1

- =

B, . By, ,_B;, can be expressed in terms of only one
coordinate system (x;,y,2,) by using Equations (12, 13
and 14). The unit direction vectors £;, y; and z; also
have to be transformed to the common coordinate
system, i.e., the x,, y,, 2, direction vectors.

According to Equation (6), the field produced by the
second set of coils at the space point (x,y,,2,) is:

Fz = 3?(3’1')%21 - '\/_/2 R)+ § (X3,y121+ \/—/2
v

RY +Bu(xiy1.21— 2/2 R) 2( Xy, ¥i,2+ ‘\/-/2
RY +By(x1,y121— V2/2 R)+By, (xpynzrt V272
R)

By using Equation (7), this becomes: _

B = By f+B,y (9 Cost-2, Sind) + Bzy (3, Siné+3,
Costf

where,
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fol

2 . .
an o (y, Siné + z, Cos#) - Cosé

T2

+ (y, Cos# - z, Sinf — R Sinf')? + (y, Sin@ + z, Cosé

V_ I-‘ul 2
—~ N2/2 R?)™%2 - d¢p' + o (¥ Sind + z, Cosf)

+ Cos¢’ " R [(x, —R Cos¢’)* + (¥, Cosf — z, Sinf — R Sing')?

+ (¥, Sinf + 2, Cosb + 42/2 RY¥?|7%2 - d¢',

_ tol
2 4q

+ (¥, Cos@ — z, Sinf — R Sin¢')? + (y, Sind + a, Cosé

\l— [.Lal 27 .
— N2/2 R)?"%2 - dip' + mmmee 0 (¥ Sin6 + z, Cos8)
- Sing’ -

+ (y; Sin8 + z, Cosf + \I;/Z R)?1732 - dgp’
and

ol 2

B, = 47 0

“[{x, — R Cosd')? + (y, Cos8 - z, Sin — R Sing’)?

+ (v, Sin6 + z, Cost — \‘?/2 R)2173% - d¢p’

ol

27
v fO — {(y, Cosé — z, Sin8) Sing’' + x, Cos¢' — R]

: [{x; — R Cosd' )2 + (y, Cosf — z, Sind = R Sing’)?

+ (7 Sind + 2, Cosd + N2/2 RIF] - dg’

are the magnitudes of the x, y and z components of B,.

The other fields can be transformed to the same set
of coordinates in a similar manner. By doing so, the
total magnetic field becomes:

- > > -
Brxuy n&a1) = BT_,.(Xn.YhZI)+BTM(X|:Y1»Z|)+BT:(X'

1Y)
where

(XhYnZ])"B +8; +(B +B.r4) C°5¢+(Bu3

ﬁ,,, )SingCosb+(Bry—Ba,  SindSin6 (15)

BTU(XthZl)—Bul“}‘Bu
)Sing +(B, B,,4)Cos¢Coq
Siné

cosé+B, Sm0+(—B +Brg
B+(B1+B, ) Cosd” 6
)

and

B,,(:c.,yl.z,)—tse,l —Byy Sin0+B,, Cost—(Byz+Byy)

Sing +(B,3+Bg4)C050 17)

Again, FIGS. 11A-11C show the computer program
for calculating the total field numerically.

MOTION OF CHARGED PARTICLES IN THE
MAGNETIC WELL

The motion of a particle in a collection of charged
particles is not only determined by the external field
but also by the fields of the other particles. If the pre-
scribed electric and magnetic fields are zero or uniform
in space and constant in time, the particle motion is
elementary. If the fields are not so simple, an exact
solution of the equations of motion is not always possi-

R - [{x;— R Cosd')? + (¥, Cosf — z, Sin8 — R Sing’)?

— [(¥, Cos8 = z, Sinf) Sing’ + x; Cos¢p’ — R|]
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R ' [(x;,— R Cos8')?

27 -
fo (v, Sin@ + 2z, Cos@) * Sind' * R * [(x, — R Cosd’)>.

ble. Nevertheless, some approximate description of the
motion is useful in dealing with plasmas analytically.

In a uniform magnetic field and zero electric field a
line charged particle moves in a helical path. The mo-
tion may be described exactly as motion about a circle
whose center is moving along a line of force. If the field
is not quite uniform (or not quite time-independent)
the charged particle’s motion will not be quite helical
but something approximating helical motion will still be
discernible.

In general, the motion of charged particle in a nonu-
niform magnetic field can be divided into two compo-
nents, one along the line of force as in uniform field,
and the other in a direction perpendicular to the line of
force.

The motion of the guiding center in a direction per-
pendicular to the line of force is called the drift veloc-
ity. In most systems, this drift velocity will result in
charge separation in a plasma containing a multitude of
both positive and negative charges. This charge separa-
tion will give rise to an electric field, which in combina-
tion with the magnetic field will lead to a drift of the
plasma as a whole. A plasma in an inhomogeneous field
will tend to drift from the regions where the field is
stronger into regions where the field is weaker. This
often leads to instabilities. In the system discussed here,
however, the magnetic field increases in every direc-
tion away from the center of the plasma, and the drift
velocity will not tend to disrupt the plasma, as usually is
the case. The drift velocity in the magnetic field de-
scribed above will now be analyzed.
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Consider now the case in which there is a charged
particle moving in a constant, homogeneous magnetic
field subject to an external force.

Assume this additional force to be constant in space
and time. The equation of motion of the particle is
then:

Fi g VB =M dVar (18)

For the integration of this equation we write down
the equations for parallel and perpendicular compo-
nents:

.
dv
7-;|= m— (19)
—
dv

q?lxz>+?l=an (20}

The motion along the field lines is not influenced by
the magnetic field itself; it is determined exclusively by
the parallel component of F.

In order to integrate Equation (2), let VI 9 be the
solution of the corresponding equation, in the absence
of F; i.e., the solution of homogeneous equation:

q V_L XB=mV

V _L % represents therefore the usual cyclotron motion.
The general solution of Equation (20) is given by:

V_L=

V| °+F xBlyB 21)
The solution is therefore a velocity made up of two
terms, namely the normal cyclotron velocity, as if there
were no external force, plus a constant velocity which
is the drift velocity Vp:
Vo=F| xBlqn (22)
This velocity is perpendicular to both B and F.

The magnetic field described herein is not homoge-
neous and the charged particle motion is not so simple
as in a homogeneous magnetic field, because of the
inhomogeneity of the field and the influence of the
curvature of the field lines. Due to these influences, the
motion of the charged particle becomes quite compli-
cated and it becomes very difficult to find an analytic
solution describing the motion. But quantitatively, we
can consider the inhomogeneity, i.e., gradient of B, and
the influence of the curvature of the magnetic field
lines as the external forces exerted on the particle in a
homogeneous field as discussed above. From this point
of view, there will be two drift velocities. V¢ and V,,
caused by the gradient of B and the influence of the
curvature of magnetic_ field lines, respectively.
VG «Bx VBand \70 x ﬁch, as can be shown directly
with the aid of Equation (22). Ftc is the centrifugal
force exerted on the particle by the curvature of a
magnetic field line, as the particle. moves along that
line. An analysis will show that the drift velocities will
force charged particles to move around the center of
the magnetic well due to its three-dimensional symme-
try. Because of the three-dimensional symmetry, the
drift velocities will not cause the particles to drift radi-
ally. The negatively charged particles and the positively
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charged particles will move around the center of the
magnetic well in opposite directions, (i.e., clockwise
and counterclockwise). This circulation does not lead
to charge separation, which is the main reason for in-
stability in other magnetic confinement devices, (for
example, in a toroidal geometry as in the stellarator).

In order to verify the configuration of the abovede-
scribed magnetic field, a set of current loops was con-
structed in accord with the tetrahedral symmetry—i.e.,
the loops were placed on the facets of a regular octahe-
dron with the fields of each opposing pair of loops
reinforcing each other, as a pair; but the pairs, as units,
oppose one another. High current at a low voltage was
supplied to the current loops to produce a magnetic
field. The configuration of this field was investigated by
the use of a Gaussmeter to measure the strength of the
field at space points. The experimental results conform
the calculated results. The general configuration of the
field was also demonstrated by sprinkling iron powder
on a flat plane positioned within the coils. The iron
powder then ordered itself along the field lines, giving
a clear picture of the field configuration in the given
plane.

Instrumentation

The current for producing magnetic field was sup-
plied by a 0-25ampere power supply. The voltage of
this power supply (0~12v) was regulated by a powerstat
to prevent high temperatures which would result in the
damage to the current loops. The relation between
current and voltage of the power supply is linear. A Bell
640 incremental Gaussmeter was used to measure the
magnetic field strength. This meter has a range of from
| to 30 k Gauss. -

The magnetic field strength was also calculated by
computer, using the numerical methods discussed pre-
viously. In order to compare the theoretical values with
measured values, a Bell 640 incremental Gaussmeter
was used to measure the strength of the field at differ-
ent space points.

As stated previously, the strength of the magnetic
field along z, -axis and x, -axis was found by both calcu-
lation and experiment. The results are listed in Tables
1, 2, 3 and 4. FIGS. 6 and 7 show the comparative
results of calculation and experiment.

The strength of the magnetic field along z, -axis is
symmetric about the center, as is the strength along the
X, -axis; but due to the field configuration, the symme-
try along the z, axis is somewhat different than the
symmetry along the x; -axis.

An unexpected characteristic of this magnetic well is
that the maximum strength does not occur at the well
boundaries as demarcated by the coils, but occurs at
positions a little bit inside them, as can be seen from
FIGS. 7 and 8.

The experimental results are in good agreement with
the calculated results, as can be seen from FIG. 7. The
deviation between them is only about 5%, but in FIG. 8,
although the positions of the maximum strength for
both experimental and calculated results are in good
agreement, their magnitudes are different. This can be
considered a result of the orientation of the Gaussme-
ter. There is a square element in the point of the probe
of the meter. Magnetic fields entering the element at
some angle to the surface cause an output response
proportional to the magnitude of the field component
at right angles to the element. That is, to say, the re-
sponse will be B Cosf where B is the field magnitude
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and 0 is the angle of the field relative to the direction
perpendicular to the element. In measuring the
strength of the magnetic field along z, -axis, there is
only one component B, (the others are negligibly
small), the reading equals the actual strength of the
field. But in the case of the measurement of B along the
X, -axis, the orientation of the field is different and it is
not possible to measure the absolute value of the field
strength without knowing the field orientation. This
explanation is supported by the facts that all the values
of experimental results are almost exactly 1.5 times less
than that of the calculated results in the corresponding
positions. The maximum and the minimum strength
positions are coincident for experimental and calcu-
lated results.

In order to estimate the drift velocity described
above, the values of the gradient of B at every position
have to be found. These can be calculated in the same
manner as was used to calculate the strength of the
magnetic field. Instead, only the gradient of B in the z
direction was found by calculating the slopes of the
curve in FIG. 7 at some positions. FIG. 9 shows the
results.

The good agreement between experimental results
and calculated results shows that the formula derived
for calculating the magnetic field is correct.

Table 1.
Experimental magnetic field strength along the z,-
axis

Position —5.5 —3.3 —1.5 —0.7 —0.3 )
{cm)
Strength 27 10 3.9 1.4 0.6 0
(Gauss)
Position 0.5 1.4 2.6 3.6 3.9 55
(cm)
Strength 0.2 0.4 3.7 8.0 9.7 26
{Gauss)

Table 2.

Calculated magnetic field strength along the z,-
axis

Position —6.5 =585 5.2 —4.55 -39 8.5
(cm)
Strength 27.3 28.4 24.1 18.2 12.99 8.5
{Gauss)
Position -2.6 —1.95 —1.3 ~0.65 0 0.65
(cm)
Strength 5.6 3.13 1.4 0.32 0 0.32
(Gauss)

Table 3.

Experimental magnetic strength along the x,-axis

Position -6 -5 —4 -3 -2 -1 0
(em)
Strength 6.8 85 6.3 3.7 1.95 0.5 0.12
(Gauss)
Position 1 2 3 4 5 6
(cm)
Strength 0.66 1.5 35 6.4 8.0 6.6
(Gauss)

Table 4.

Calculated magnetic strength along the x,-axis

Position —6.5 —5.85 -5.2 —-4.55 ~3.9 =325 2.6
(cm)
Strength 3.03 7.6 12.1 128 110 822 5.5
(Gauss)
Position -1.95 -13 —0.65 0 0.65 1.3 1.95

(cm)

10

15

20

25

30

35

40

45

50

55

60

65

14

Table 4.-continued

Calculated magnetic strength along the x,-axis

Strength 3.2 1.5 0.44 0 0.14 096  2.37
(Gauss)
Position 2.6 3.25 39 455 5.2 585 6.5
(Gauss)
Strength 4.4 6.96 9.7 I8 116 8.0 2.64
(Gauss)

FIGS. 7 and 8 clearly show the mirror characteristics
of the magnetic well. Furthermore, FIG. 5 shows the
cusped geometry and the three-dimentional confining
ability of this magnetic well.

As previously discussed, this magnetic well has the
advantages of a cusped geometry magnetic well but it
has a more nearly spherical symmetry than the conven-
tional ones and has a three-dimensional confining abil-
ity. These characteristics make this type of magnetic
well very well suited for confining a plasma.

The gradient of the field is quite large in the outer
regions of the well and decreases toward the center.
This characteristic indicates that the magnetic “pres-
sure” increases sharply in the direction away from the
center. In turn, this enhances the plasma confinement
because of the continuously increased pressure exerted
on the plasma, should it move away from the center of
the well. Furthermore, there is no charge separation to
cause instability. This is a favorable characteristic of
the present magnetic well.

With the present invention, it is appreciated that
there is a possibility that charged particles may be lost
from the poles (end losses). That is, a particle may
escape from the well if it travels toward. the pole posi-
tions at a certain angle with a certain energy. This loss
may be overcome by the structure shown in FIG. 10
wherein the magnetic well is formed by current loops
placed on planes corresponding to the facets of a regu-
lar octahedron with the magnetic fields of each coil of
an opposing pair of coils being arranged to reinforce
each other, thus providing a magnetic well with tetra-
hedral symmetry, the tetrahedron of symmetry for the
field being denoted 50 in FIG. 1.

The apexes of the tetrahedron 58 shown in FIG. 10
are the positions that a particle may travel through and
then escape from the magnetic well. In addition, there
are the center locations of each facet of the tetrahe-
dron. These eight positions correspond to the eight
centers of the eight current loops used for producing
the magnetic field. Four confining tubes 51 each ex-
tend between one of the apexes of the tetrahedron 50
and the center of the opposing facet. Thus, each tube
connects two of the opposite poles. Each tube is pro-
vided with suitable current-carrying windings (53) to
generate a magnetic field about the axis of the tube
such as to cause particles lost from one pole to migrate
through the tube to an opposite pole of the well.

In general, it is preferred that the structures discussed
be as close as possible to the ideal, as expressed by the
geometrical concepts used in disclosing the invention.
However, persons skilled in the art will appreciate, for
example, that the polyhedral shapes may be varied to
some extent from the regular shapes discussed, the
loops may be less than true circles, and the symmetry of
the magnetic flux surface may be slightly irregular
while continuing to practice the principle of the inven-
tion. All such modifications and substitutions are in-
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